Hand Part Classification Using Single Depth Images
نویسندگان
چکیده
Hand pose recognition has received increasing attention as an area of HCI. Recently with the spreading of many low cost 3D camera, researches for understanding more natural gestures have been studied. In this paper we present a method for hand part classification and joint estimation from a single depth image. We apply random decision forests(RDF) for hand part classification. Foreground pixels in the hand image are estimated by RDF, which is called per-pixel classification. Then hand joints are estimated based on the classified hand parts. We suggest robust feature extraction method for per-pixel classification, which enhances the accuracy of hand part classification. Depth images and label images synthesized by 3D hand mesh model are used for algorithm verification. Finally we apply our algorithm to the real depth image from conventional 3D camera and show the experiment result.
منابع مشابه
Hand Gesture Recognition from RGB-D Data using 2D and 3D Convolutional Neural Networks: a comparative study
Despite considerable enhances in recognizing hand gestures from still images, there are still many challenges in the classification of hand gestures in videos. The latter comes with more challenges, including higher computational complexity and arduous task of representing temporal features. Hand movement dynamics, represented by temporal features, have to be extracted by analyzing the total fr...
متن کاملDepth image hand tracking from an overhead perspective using partially labeled, unbalanced data: Development and real-world testing
—We present the development and evaluation of a hand tracking algorithm based on single depth images captured from an overhead perspective for use in the COACH prompting system. We train a random decision forest body part classifier using approximately 5,000 manually labeled, unbalanced, partially labeled training images. The classifier represents a random subset of pixels in each depth image w...
متن کاملاستفاده از برآورد حالتهای پویای دست مبتنی بر مدل، برای تقلید عملکرد بازوی انسان توسط ربات با دادههای کینکت
Pose estimation is a process to identify how a human body and/or individual limbs are configured in a given scene. Hand pose estimation is an important research topic which has a variety of applications in human-computer interaction (HCI) scenarios, such as gesture recognition, animation synthesis and robot control. However, capturing the hand motion is quite a challenging task due to its high ...
متن کاملComparison of 2D and 3D Analysis For Automated Cued Speech Gesture Recognition
This paper deals with the problem of the automated classification of cued speech gestures. Cued speech is a specific gesture language (different from the sign language) used for communication between deaf people and other people. It uses only 8 different hand configurations. The aim of this work is to apply a simple classifier on 3 images data sets, in order to answer two main questions: is 3D ...
متن کاملEstimation of Hand Skeletal Postures by Using Deep Convolutional Neural Networks
Hand posture estimation attracts researchers because of its many applications. Hand posture recognition systems simulate the hand postures by using mathematical algorithms. Convolutional neural networks have provided the best results in the hand posture recognition so far. In this paper, we propose a new method to estimate the hand skeletal posture by using deep convolutional neural networks. T...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014